Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.824
1.
Sci Rep ; 14(1): 10740, 2024 05 10.
Article En | MEDLINE | ID: mdl-38729987

Klotho regulates many pathways in the aging process, but it remains unclear how it is physiologically regulated. Because Klotho is synthesized, cleaved, and released from the kidney; activates the chief urinary K+ secretion channel (ROMK) and stimulates urinary K+ secretion, we explored if Klotho protein is regulated by dietary K+ and the potassium-regulatory hormone, Aldosterone. Klotho protein along the nephron was evaluated in humans and in wild-type (WT) mice; and in mice lacking components of Aldosterone signaling, including the Aldosterone-Synthase KO (AS-KO) and the Mineralocorticoid-Receptor KO (MR-KO) mice. We found the specific cells of the distal nephron in humans and mice that are chief sites of regulated K+ secretion have the highest Klotho protein expression along the nephron. WT mice fed K+-rich diets increased Klotho expression in these cells. AS-KO mice exhibit normal Klotho under basal conditions but could not upregulate Klotho in response to high-K+ intake in the K+-secreting cells. Similarly, MR-KO mice exhibit decreased Klotho protein expression. Together, i) Klotho is highly expressed in the key sites of regulated K+ secretion in humans and mice, ii) In mice, K+-rich diets increase Klotho expression specifically in the potassium secretory cells of the distal nephron, iii) Aldosterone signaling is required for Klotho response to high K+ intake.


Aldosterone , Glucuronidase , Klotho Proteins , Mice, Knockout , Potassium , Klotho Proteins/metabolism , Animals , Humans , Mice , Potassium/metabolism , Aldosterone/metabolism , Glucuronidase/metabolism , Glucuronidase/genetics , Male , Nephrons/metabolism , Potassium, Dietary/metabolism , Potassium, Dietary/administration & dosage , Female , Receptors, Mineralocorticoid/metabolism , Receptors, Mineralocorticoid/genetics , Mice, Inbred C57BL
2.
FASEB J ; 38(10): e23670, 2024 May 31.
Article En | MEDLINE | ID: mdl-38747803

HPSE2, the gene-encoding heparanase 2 (Hpa2), is mutated in urofacial syndrome (UFS), a rare autosomal recessive congenital disease attributed to peripheral neuropathy. Hpa2 lacks intrinsic heparan sulfate (HS)-degrading activity, the hallmark of heparanase (Hpa1), yet it exhibits a high affinity toward HS, thereby inhibiting Hpa1 enzymatic activity. Hpa2 regulates selected genes that promote normal differentiation, tissue homeostasis, and endoplasmic reticulum (ER) stress, resulting in antitumor, antiangiogenic, and anti-inflammatory effects. Importantly, stress conditions induce the expression of Hpa2, thus establishing a feedback loop, where Hpa2 enhances ER stress which, in turn, induces Hpa2 expression. In most cases, cancer patients who retain high levels of Hpa2 survive longer than patients bearing Hpa2-low tumors. Experimentally, overexpression of Hpa2 attenuates the growth of tumor xenografts, whereas Hpa2 gene silencing results in aggressive tumors. Studies applying conditional Hpa2 knockout (cHpa2-KO) mice revealed an essential involvement of Hpa2 contributed by the host in protecting against cancer and inflammation. This was best reflected by the distorted morphology of the Hpa2-null pancreas, including massive infiltration of immune cells, acinar to adipocyte trans-differentiation, and acinar to ductal metaplasia. Moreover, orthotopic inoculation of pancreatic ductal adenocarcinoma (PDAC) cells into the pancreas of Hpa2-null vs. wild-type mice yielded tumors that were by far more aggressive. Likewise, intravenous inoculation of cancer cells into cHpa2-KO mice resulted in a dramatically increased lung colonization reflecting the involvement of Hpa2 in restricting the formation of a premetastatic niche. Elucidating Hpa2 structure-activity-relationships is expected to support the development of Hpa2-based therapies against cancer and inflammation.


Glucuronidase , Inflammation , Neoplasms , Humans , Animals , Inflammation/metabolism , Inflammation/pathology , Neoplasms/pathology , Neoplasms/metabolism , Neoplasms/genetics , Glucuronidase/metabolism , Glucuronidase/genetics , Mice , Endoplasmic Reticulum Stress
3.
Orphanet J Rare Dis ; 19(1): 189, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715031

BACKGROUND: Mucopolysaccharidosis VII (MPS VII) is an ultra-rare, autosomal recessive, debilitating, progressive lysosomal storage disease caused by reduced activity of ß-glucuronidase (GUS) enzyme. Vestronidase alfa (recombinant human GUS) intravenous enzyme replacement therapy is an approved treatment for patients with MPS VII. METHODS: This disease monitoring program (DMP) is an ongoing, multicenter observational study collecting standardized real-world data from patients with MPS VII (N ≈ 50 planned) treated with vestronidase alfa or any other management approach. Data are monitored and recorded in compliance with Good Clinical Practice guidelines and planned interim analyses of captured data are performed annually. Here we summarize the safety and efficacy outcomes as of 17 November 2022. RESULTS: As of the data cutoff date, 35 patients were enrolled: 28 in the Treated Group and seven in the Untreated Group. Mean (SD) age at MPS VII diagnosis was 4.5 (4.0) years (range, 0.0 to 12.4 years), and mean (SD) age at DMP enrollment was 13.9 (11.1) years (range, 1.5 to 50.2 years). Ten patients (29%) had a history of nonimmune hydrops fetalis. In the 23 patients who initiated treatment prior to DMP enrollment, substantial changes in mean excretion from initial baseline to DMP enrollment were observed for the three urinary glycosaminoglycans (uGAGs): dermatan sulfate (DS), -84%; chondroitin sulfate (CS), -55%; heparan sulfate (HS), -42%. Also in this group, mean reduction from initial baseline to months 6, 12, and 24 were maintained for uGAG DS (-84%, -87%, -89%, respectively), CS (-70%, -71%, -76%, respectively), and HS (+ 3%, -32%, and - 41%, respectively). All adverse events (AEs) were consistent with the known vestronidase alfa safety profile. No patients discontinued vestronidase alfa. One patient died. CONCLUSIONS: To date, the DMP has collected invaluable MPS VII disease characteristic data. The benefit-risk profile of vestronidase alfa remains unchanged and favorable for its use in the treatment of pediatric and adult patients with MPS VII. Reductions in DS and CS uGAG demonstrate effectiveness of vestronidase alfa to Month 24. Enrollment is ongoing.


Enzyme Replacement Therapy , Glucuronidase , Mucopolysaccharidosis VII , Recombinant Proteins , Humans , Mucopolysaccharidosis VII/drug therapy , Glucuronidase/therapeutic use , Glucuronidase/metabolism , Male , Child, Preschool , Female , Child , Enzyme Replacement Therapy/methods , Recombinant Proteins/therapeutic use , Recombinant Proteins/administration & dosage , Recombinant Proteins/adverse effects , Infant , Longitudinal Studies , Adolescent
4.
Atherosclerosis ; 392: 117519, 2024 May.
Article En | MEDLINE | ID: mdl-38581737

BACKGROUND AND AIMS: Atherosclerosis is the primary underlying cause of myocardial infarction and stroke, which are the major causes of death globally. Heparanase (Hpse) is a pro-inflammatory extracellular matrix degrading enzyme that has been implicated in atherogenesis. However, to date the precise roles of Hpse in atherosclerosis and its mechanisms of action are not well defined. This study aims to provide new insights into the contribution of Hpse in different stages of atherosclerosis in vivo. METHODS: We generated Hpse gene-deficient mice on the atherosclerosis-prone apolipoprotein E gene knockout (ApoE-/-) background to investigate the impact of Hpse gene deficiency on the initiation and progression of atherosclerosis after 6 and 14 weeks high-fat diet feeding, respectively. Atherosclerotic lesion development, blood serum profiles, lesion composition and aortic immune cell populations were evaluated. RESULTS: Hpse-deficient mice exhibited significantly reduced atherosclerotic lesion burden in the aortic sinus and aorta at both time-points, independent of changes in plasma cholesterol levels. A significant reduction in the necrotic core size and an increase in smooth muscle cell content were also observed in advanced atherosclerotic plaques of Hpse-deficient mice. Additionally, Hpse deficiency reduced circulating and aortic levels of VCAM-1 at the initiation and progression stages of disease and circulating MCP-1 levels in the initiation but not progression stage. Moreover, the aortic levels of total leukocytes and dendritic cells in Hpse-deficient ApoE-/- mice were significantly decreased compared to control ApoE-/-mice at both disease stages. CONCLUSIONS: This study identifies Hpse as a key pro-inflammatory enzyme driving the initiation and progression of atherosclerosis and highlighting the potential of Hpse inhibitors as novel anti-inflammatory treatments for cardiovascular disease.


Aorta , Atherosclerosis , Disease Models, Animal , Disease Progression , Glucuronidase , Mice, Knockout, ApoE , Plaque, Atherosclerotic , Animals , Atherosclerosis/genetics , Atherosclerosis/pathology , Atherosclerosis/enzymology , Atherosclerosis/metabolism , Glucuronidase/deficiency , Glucuronidase/genetics , Glucuronidase/metabolism , Aorta/pathology , Aorta/metabolism , Aorta/enzymology , Aortic Diseases/pathology , Aortic Diseases/genetics , Aortic Diseases/enzymology , Aortic Diseases/metabolism , Diet, High-Fat , Apolipoproteins E/genetics , Apolipoproteins E/deficiency , Mice, Inbred C57BL , Male , Vascular Cell Adhesion Molecule-1/metabolism , Mice , Mice, Knockout , Sinus of Valsalva/pathology , Necrosis
5.
Methods Mol Biol ; 2787: 245-253, 2024.
Article En | MEDLINE | ID: mdl-38656494

To properly assess promoter activity, which is critical for understanding biosynthetic pathways in different plant species, we use agroinfiltration-based transient gene expression assay. We compare the activity of several known promoters in Nicotiana benthamiana with their activity in Cannabis sativa (both hemp and medicinal cannabis), which has attracted much attention in recent years for its industrial, medicinal, and recreational properties. Here we describe an optimized protocol for transient expression in Cannabis combined with a ratiometric GUS reporter system that allows more accurate evaluation of promoter activity and reduces the effects of variable infiltration efficiency.


Cannabis , Gene Expression Regulation, Plant , Nicotiana , Plants, Genetically Modified , Promoter Regions, Genetic , Cannabis/genetics , Cannabis/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Plants, Genetically Modified/genetics , Genes, Reporter , Gene Expression/genetics , Glucuronidase/genetics , Glucuronidase/metabolism
6.
Mol Nutr Food Res ; 68(8): e2300831, 2024 Apr.
Article En | MEDLINE | ID: mdl-38602198

SCOPE: The excretion of dietary odorants into urine and milk is evaluated and the impact of possible influencing factors determined. Furthermore, the metabolic relevance of conjugates for the excretion into milk is investigated. METHODS AND RESULTS: Lactating mothers (n = 20) are given a standardized curry dish and donated one milk and urine sample each before and 1, 2, 3, 4.5, 6, and 8 h after the intervention. The concentrations of nine target odorants in these samples are determined. A significant transition is observed for linalool into milk, as well as for linalool, cuminaldehyde, cinnamaldehyde, and eugenol into urine. Maximum concentrations are reached within 1 h after the intervention in the case of milk and within 2-3 h in the case of urine. In addition, the impact of glucuronidase treatment on odorant concentrations is evaluated in a sample subset of twelve mothers. Linalool, eugenol, and vanillin concentrations increased 3-77-fold in milk samples after treatment with ß-glucuronidase. CONCLUSION: The transfer profiles of odorants into milk and urine differ qualitatively, quantitatively, and in temporal aspects. More substances are transferred into urine and the transfer needs a longer period compared with milk. Phase II metabolites are transferred into urine and milk.


Acrolein/analogs & derivatives , Acyclic Monoterpenes , Benzaldehydes , Eugenol , Milk, Human , Odorants , Humans , Milk, Human/chemistry , Female , Odorants/analysis , Eugenol/urine , Eugenol/metabolism , Eugenol/analogs & derivatives , Adult , Benzaldehydes/urine , Acyclic Monoterpenes/urine , Glucuronidase/metabolism , Lactation , Acrolein/urine , Acrolein/metabolism , Monoterpenes/urine
7.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article En | MEDLINE | ID: mdl-38673780

Cognitive impairment (CI) is a complication of chronic kidney disease (CKD) that is frequently observed among patients. The aim of this study was to evaluate the potential crosstalk between changes in cognitive function and the levels of Klotho in the brain cortex in an experimental model of CKD. To induce renal damage, Wistar rats received a diet containing 0.25% adenine for six weeks, while the control group was fed a standard diet. The animals underwent different tests for the assessment of cognitive function. At sacrifice, changes in the parameters of mineral metabolism and the expression of Klotho in the kidney and frontal cortex were evaluated. The animals with CKD exhibited impaired behavior in the cognitive tests in comparison with the rats with normal renal function. At sacrifice, CKD-associated mineral disorder was confirmed by the presence of the expected disturbances in the plasma phosphorus, PTH, and both intact and c-terminal FGF23, along with a reduced abundance of renal Klotho. Interestingly, a marked and significant decrease in Klotho was observed in the cerebral cortex of the animals with renal dysfunction. In sum, the loss in cerebral Klotho observed in experimental CKD may contribute to the cognitive dysfunction frequently observed among patients. Although further studies are required, Klotho might have a relevant role in the development of CKD-associated CI and represent a potential target in the management of this complication.


Cerebral Cortex , Cognitive Dysfunction , Glucuronidase , Klotho Proteins , Rats, Wistar , Renal Insufficiency, Chronic , Klotho Proteins/metabolism , Animals , Renal Insufficiency, Chronic/metabolism , Cerebral Cortex/metabolism , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/etiology , Rats , Male , Glucuronidase/metabolism , Fibroblast Growth Factor-23/metabolism , Disease Models, Animal , Kidney/metabolism , Fibroblast Growth Factors/metabolism
8.
In Vivo ; 38(3): 1162-1169, 2024.
Article En | MEDLINE | ID: mdl-38688607

BACKGROUND/AIM: Chronic cerebral hypoxia often leads to brain damage and inflammation. Propofol is suggested to have neuroprotective effects under anaesthesia. MATERIALS AND METHODS: This study used rat models with carotid artery coarctation or closure. Four groups of rats were compared: a control group, a propofol-treated group, a group with bilateral common carotid artery blockage (BCAO), and a BCAO group treated with propofol post-surgery. RESULTS: The Morris water maze test indicated cognitive impairment in BCAO rats, which also showed hippocampal structure changes, oxidative stress markers alteration, and reduced Klotho expression. Propofol treatment post-BCAO surgery improved these outcomes, suggesting its potential in mitigating chronic cerebral hypoxia effects. CONCLUSION: Propofol may increase klotho levels and reduce apoptosis and inflammation linked to oxidative stress in cognitively impaired mice.


Disease Models, Animal , Glucuronidase , Hippocampus , Hypoxia, Brain , Klotho Proteins , Oxidative Stress , Propofol , Animals , Propofol/pharmacology , Hippocampus/metabolism , Hippocampus/drug effects , Hippocampus/pathology , Rats , Klotho Proteins/metabolism , Male , Oxidative Stress/drug effects , Hypoxia, Brain/metabolism , Hypoxia, Brain/pathology , Hypoxia, Brain/etiology , Glucuronidase/metabolism , Maze Learning/drug effects , Apoptosis/drug effects , Neuroprotective Agents/pharmacology , Chronic Disease
9.
J Dent Res ; 103(5): 461-466, 2024 May.
Article En | MEDLINE | ID: mdl-38584298

A subset of bacterial species that holds genes encoding for ß-glucuronidase and ß-galactosidase, enzymes involved in the metabolism of conjugated estrogens, is called the "estrobolome." There is an emerging interest embracing this concept, as it may exert a selective impact on a number of pathologies, including oral cancer. Although the estrobolome bacteria are typically part of the gut microbiota, recent experimental pieces of evidence have suggested a crosstalk among oral and gut microbiota. In fact, several oral bacterial species are well represented also in the gut microbiota, and these microbes can effectively induce the estrobolome activation. The main pathways used for activating the estrobolome are based on the induction of the expression patterns for 2 bacterial enzymes: ß-glucuronidase and aromatase, both involved in the increase of estrogen released in the bloodstream and consequently in the salivary compartment. Mechanistically, high estrogen availability in saliva is responsible for an increase in oral cancer risk for different reasons: briefly, 1) estrogens directly exert biological and metabolic effects on oral mucosa cells; 2) they can modulate the pathological profile of some bacteria, somewhere associated with neoplastic processes (i.e., Fusobacterium spp., Parvimonas ssp.); and 3) some oral bacteria are able to convert estrogens into carcinogenic metabolites, such as 4-hydroxyestrone and 16α-hydroxyestrone (16α-OHE), and can also promote local and systemic inflammation. Nowadays, only a small number of scientific studies have taken into consideration the potential correlations among oral dysbiosis, alterations of the gut estrobolome, and some hormone-dependent cancers: this lack of attention on such a promising topic could be a bias affecting the full understanding of the pathogenesis of several estrogen-related oral pathologies. In our article, we have speculated on the activity of an oral-gut-estrobolome axis, capable of synergizing these 2 important microbiotas, shedding light on a pilot hypothesis requiring further research.


Estrogens , Gastrointestinal Microbiome , Mouth Neoplasms , Humans , Estrogens/metabolism , Mouth/microbiology , Glucuronidase/metabolism , Saliva/microbiology , Saliva/metabolism , beta-Galactosidase/metabolism
10.
Sci Rep ; 14(1): 9820, 2024 04 29.
Article En | MEDLINE | ID: mdl-38684767

In critically ill patients, overweight and obesity are associated with acute respiratory distress syndrome and acute kidney injury (AKI). However, the effect of obesity on ischemia-reperfusion injury (IRI)-induced AKI is unknown. We hypothesized that obesity would aggravate renal IRI in mice. We fed mice a standard or high-fat diet for eight weeks. The mice were divided into four groups and submitted to sham surgery or IRI: obese, normal, normal + IRI, obese, and obese + IRI. All studies were performed 48 h after the procedures. Serum glucose, cholesterol, and creatinine clearance did not differ among the groups. Survival and urinary osmolality were lower in the obese + IRI group than in the normal + IRI group, whereas urinary neutrophil gelatinase-associated lipocalin levels, tubular injury scores, and caspase 3 expression were higher. Proliferating cell nuclear antigen expression was highest in the obese + IRI group, as were the levels of oxidative stress (urinary levels of thiobarbituric acid-reactive substances and renal heme oxygenase-1 protein expression), whereas renal Klotho protein expression was lowest in that group. Expression of glutathione peroxidase 4 and peroxiredoxin 6, proteins that induce lipid peroxidation, a hallmark of ferroptosis, was lower in the obese + IRI group. Notably, among the mice not induced to AKI, macrophage infiltration was greater in the obese group. In conclusion, greater oxidative stress and ferroptosis might aggravate IRI in obese individuals, and Klotho could be a therapeutic target in those with AKI.


Acute Kidney Injury , Obesity , Oxidative Stress , Reperfusion Injury , Animals , Acute Kidney Injury/etiology , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Reperfusion Injury/complications , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Obesity/complications , Obesity/metabolism , Mice , Male , Diet, High-Fat/adverse effects , Disease Models, Animal , Mice, Inbred C57BL , Glucuronidase/metabolism , Kidney/metabolism , Kidney/pathology
11.
Mol Metab ; 83: 101930, 2024 May.
Article En | MEDLINE | ID: mdl-38570069

OBJECTIVE: Tumour progression drives profound alterations in host metabolism, such as adipose tissue depletion, an early event of cancer cachexia. As fatty acid consumption by cancer cells increases upon acidosis of the tumour microenvironment, we reasoned that fatty acids derived from distant adipose lipolysis may sustain tumour fatty acid craving, leading to the adipose tissue loss observed in cancer cachexia. METHODS: To evaluate the pro-lipolytic capacities of acid-exposed cancer cells, primary mouse adipocytes from subcutaneous and visceral adipose tissue were exposed to pH-matched conditioned medium from human and murine acid-exposed cancer cells (pH 6.5), compared to naive cancer cells (pH 7.4). To further address the role of tumoral acidosis on adipose tissue loss, a pH-low insertion peptide was injected into tumour-bearing mice, and tumoral acidosis was neutralised with a sodium bicarbonate buffer. Prolipolytic mediators were identified by transcriptomic approaches and validated on murine and human adipocytes. RESULTS: Here, we reveal that acid-exposed cancer cells promote lipolysis from subcutaneous and visceral adipocytes and that dampening acidosis in vivo inhibits adipose tissue depletion. We further found a set of well-known prolipolytic factors enhanced upon acidosis adaptation and unravelled a role for ß-glucuronidase (GUSB) as a promising new actor in adipocyte lipolysis. CONCLUSIONS: Tumoral acidosis promotes the mobilization of fatty acids derived from adipocytes via the release of soluble factors by cancer cells. Our work paves the way for therapeutic approaches aimed at tackling cachexia by targeting the tumour acidic compartment.


Acidosis , Adipocytes , Adipose Tissue , Cachexia , Lipolysis , Animals , Mice , Acidosis/metabolism , Adipocytes/metabolism , Humans , Adipose Tissue/metabolism , Cachexia/metabolism , Male , Tumor Microenvironment , Cell Line, Tumor , Mice, Inbred C57BL , Fatty Acids/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Female , Glucuronidase/metabolism , Hydrogen-Ion Concentration
12.
Appl Environ Microbiol ; 90(3): e0185123, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38426790

Symbiotic nitrogen fixation (SNF) by rhizobia is not only the main natural bionitrogen-source for organisms but also a green process leveraged to increase the fertility of soil for agricultural production. However, an insufficient understanding of the regulatory mechanism of SNF hinders its practical application. During SNF, nifA-fixA signaling is essential for the biosynthesis of nitrogenases and electron transfer chain proteins. In the present study, the TetR regulator NffT, whose mutation increased fixA expression, was discovered through a fixA-promoter-ß-glucuronidase fusion assay performed with Rhizobium johnstonii. Real-time quantitative PCR analysis showed that nffT deletion increased the expression of symbiotic genes including nifA and fixA in nifA-fixA signaling, and fixL, fixK, fnrN, and fixN9 in fixL-fixN signaling. nffT overexpression resulted in disordered nodules and reduced nitrogen-fixing efficiency. Electrophoretic mobility shift assays revealed that NffT directly regulated the transcription of RL0091-93, which encode an ATP-binding ABC transporter predicted to be involved in carbohydrate transport. Purified His-tagged NffT bound to a 68 bp DNA sequence located -32 to -99 bp upstream of RL0091-93 and NffT deletion significantly increased the expression of RL0091-93. nffT-promoter-ß-glucuronidase fusion assay indicated that nffT expression was regulated by the cobNTS genes and cobalamin. Mutations in cobNTS significantly decreased the expression of nffT, and cobalamin restored its expression. These results revealed that NffT affects nodule development and nitrogen-fixing reaction by participating in a complex regulatory network of symbiotic and carbohydrate metabolic genes and, thus, plays a pivotal regulatory role during symbiosis of R. johnstonii-Pisum sativum.IMPORTANCESymbiotic nitrogen fixation (SNF) by rhizobia is a green way to maintain soil fertility without causing environmental pollution or consuming chemical energy. A detailed understanding of the regulatory mechanism of this complex process is essential for promoting sustainable agriculture. In this study, we discovered the TetR-type regulator NffT, which suppressed the expression of fixA in Rhizobium johnstonii. Furthermore, NffT was confirmed to play pleiotropic roles in R. johnstonii-Pisum sativum symbiosis; specifically, it inhibited rhizobial growth, nodule differentiation, and nitrogen-fixing reactions. We revealed that NffT indirectly affected R. johnstonii-P. sativum symbiosis by participating in a complex regulatory network of symbiotic and carbohydrate metabolic genes. Furthermore, cobalamin, a chemical molecule, was reported for the first time to be involved in TetR-type protein transcription during symbiosis. Thus, NffT identification connects SNF regulation with genetic, metabolic, and chemical signals and provides new insights into the complex regulation of SNF, laying an experimental basis for the targeted construction of rhizobial strains with highly efficient nitrogen-fixing capacity.


Rhizobium , Rhizobium/genetics , Rhizobium/metabolism , Nitrogen Fixation/genetics , Pisum sativum , Glucuronidase/metabolism , Carbohydrates , Nitrogen/metabolism , Soil , Vitamin B 12/metabolism , Symbiosis/genetics
13.
Cell Death Dis ; 15(3): 232, 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38519456

Unlike the intense research effort devoted to exploring the significance of heparanase in cancer, very little attention was given to Hpa2, a close homolog of heparanase. Here, we explored the role of Hpa2 in breast cancer. Unexpectedly, we found that patients endowed with high levels of Hpa2 exhibited a higher incidence of tumor metastasis and survived less than patients with low levels of Hpa2. Immunohistochemical examination revealed that in normal breast tissue, Hpa2 localizes primarily in the cell nucleus. In striking contrast, in breast carcinoma, Hpa2 expression is not only decreased but also loses its nuclear localization and appears diffuse in the cell cytoplasm. Importantly, breast cancer patients in which nuclear localization of Hpa2 is retained exhibited reduced lymph-node metastasis, suggesting that nuclear localization of Hpa2 plays a protective role in breast cancer progression. To examine this possibility, we engineered a gene construct that directs Hpa2 to the cell nucleus (Hpa2-Nuc). Notably, overexpression of Hpa2 in breast carcinoma cells resulted in bigger tumors, whereas targeting Hpa2 to the cell nucleus attenuated tumor growth and tumor metastasis. RNAseq analysis was performed to reveal differentially expressed genes (DEG) in Hpa2-Nuc tumors vs. control. The analysis revealed, among others, decreased expression of genes associated with the hallmark of Kras, beta-catenin, and TNF-alpha (via NFkB) signaling. Our results imply that nuclear localization of Hpa2 prominently regulates gene transcription, resulting in attenuation of breast tumorigenesis. Thus, nuclear Hpa2 may be used as a predictive parameter in personalized medicine for breast cancer patients.


Breast Neoplasms , Glucuronidase , Humans , Female , Glucuronidase/genetics , Glucuronidase/metabolism , Breast Neoplasms/genetics , Signal Transduction , Cell Nucleus/metabolism
14.
Mol Genet Metab ; 141(3): 108145, 2024 Mar.
Article En | MEDLINE | ID: mdl-38301529

Mucopolysaccharidosis type VII (MPS VII) is an ultra-rare, life-threatening, progressive disease caused by genetic mutations that affect lysosomal storage/function. MPS VII has an estimated prevalence of <1:1,000,000 and accounts for <3% of all MPS diagnoses. Given the rarity of MPS VII, comprehensive information on the disease is limited and we present a review of the current understanding. In MPS VII, intracellular glycosaminoglycans accumulate due to a deficiency in the lysosomal enzyme that is responsible for their degradation, ß-glucuronidase, which is encoded by the GUSB gene. MPS VII has a heterogeneous presentation. Features can manifest across multiple systems and can vary in severity, age of onset and progression. The single most distinguishing clinical feature of MPS VII is non-immune hydrops fetalis (NIHF), which presents during pregnancy. MPS VII usually presents within one month of life and become more prominent at 3 to 4 years of age; key features are skeletal deformities, hepatosplenomegaly, coarse facies, and cognitive impairment, although phenotypic variation is a hallmark. Current treatments include hematopoietic stem cell transplantation and enzyme replacement therapy with vestronidase alfa. Care should be individualized for each patient. Development of consensus guidelines for MPS VII management and treatment is needed, as consolidation of expert knowledge and experience (for example, through the MPS VII Disease Monitoring Program) may provide a significant positive impact to patients.


Hematopoietic Stem Cell Transplantation , Mucopolysaccharidosis VII , Pregnancy , Female , Humans , Mucopolysaccharidosis VII/diagnosis , Mucopolysaccharidosis VII/genetics , Mucopolysaccharidosis VII/therapy , Glucuronidase/metabolism , Hepatomegaly , Splenomegaly , Glycosaminoglycans , Rare Diseases/drug therapy
15.
Biotechnol Lett ; 46(2): 223-233, 2024 Apr.
Article En | MEDLINE | ID: mdl-38310624

Bilirubin, a key active ingredient of bezoars with extensive clinical applications in China, is produced through a chemical process. However, this method suffers from inefficiency and adverse environmental impacts. To address this challenge, we present a novel and efficient approach for bilirubin production via whole-cell transformation. In this study, we employed Corynebacterium glutamicum ATCC13032 to express a ß-glucuronidase (StGUS), an enzyme from Staphylococcus sp. RLH1 that effectively hydrolyzes conjugated bilirubin to bilirubin. Following the optimization of the biotransformation conditions, a remarkable conversion rate of 79.7% in the generation of bilirubin was obtained at temperate 40 °C, pH 7.0, 1 mM Mg2+ and 6 mM antioxidant NaHSO3 after 12 h. These findings hold significant potential for establishing an industrially viable platform for large-scale bilirubin production.


Bilirubin , Corynebacterium glutamicum , Glucuronidase/genetics , Glucuronidase/metabolism , Corynebacterium glutamicum/metabolism , Staphylococcus , China
16.
Nat Commun ; 15(1): 1564, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38378682

Although FOXP3+ regulatory T cells (Treg) depend on IL-2 produced by other cells for their survival and function, the levels of IL-2 in inflamed tissue are low, making it unclear how Treg access this critical resource. Here, we show that Treg use heparanase (HPSE) to access IL-2 sequestered by heparan sulfate (HS) within the extracellular matrix (ECM) of inflamed central nervous system tissue. HPSE expression distinguishes human and murine Treg from conventional T cells and is regulated by the availability of IL-2. HPSE-/- Treg have impaired stability and function in vivo, including in the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis. Conversely, endowing monoclonal antibody-directed chimeric antigen receptor (mAbCAR) Treg with HPSE enhances their ability to access HS-sequestered IL-2 and their ability to suppress neuroinflammation in vivo. Together, these data identify a role for HPSE and the ECM in immune tolerance, providing new avenues for improving Treg-based therapy of autoimmunity.


Encephalomyelitis, Autoimmune, Experimental , T-Lymphocytes, Regulatory , Mice , Animals , Humans , Interleukin-2/metabolism , Glucuronidase/genetics , Glucuronidase/metabolism , Extracellular Matrix/metabolism , Heparitin Sulfate/metabolism
17.
Front Endocrinol (Lausanne) ; 15: 1310466, 2024.
Article En | MEDLINE | ID: mdl-38352710

Introduction: Due to the relatively long life span of rodent models, in order to expediate the identification of novel therapeutics of age related diseases, mouse models of accelerated aging have been developed. In this study we examined skeletal changes in the male and female Klotho mutant (kl/kl) mice and in male and female chronically aged mice to determine whether the accelerated aging bone phenotype of the kl/kl mouse reflects changes in skeletal architecture that occur with chronological aging. Methods: 2, 6 and 20-23 month old C57BL/6 mice were obtained from the National Institute of Aging aged rodent colony and wildtype and kl/kl mice were generated as previously described by M. Kuro-o. Microcomputed tomography analysis was performed ex vivo to examine trabecular and cortical parameters from the proximal metaphyseal and mid-diaphyseal areas, respectively. Serum calcium and phosphate were analyzed using a colorimetric assay. The expression of duodenal Trpv6, which codes for TRPV6, a vitamin D regulated epithelial calcium channel whose expression reflects intestinal calcium absorptive efficiency, was analyzed by quantitative real-time PCR. Results and discussion: Trabecular bone volume (BV/TV) and trabecular number decreased continuously with age in males and females. In contrast to aging mice, an increase in trabecular bone volume and trabecular number was observed in both male and female kl/kl mice. Cortical thickness decreased with advancing age and also decreased in male and female kl/kl mice. Serum calcium and phosphate levels were significantly increased in kl/kl mice but did not change with age. Aging resulted in a decline in Trpv6 expression. In the kl/kl mice duodenal Trpv6 was significantly increased. Our findings reflect differences in bone architecture as well as differences in calcium and phosphate homeostasis and expression of Trpv6 between the kl/kl mutant mouse model of accelerated aging and chronological aging. Although the Klotho deficient mouse has provided a new understanding of the regulation of mineral homeostasis and bone metabolism, our findings suggest that changes in bone architecture in the kl/kl mouse reflect in part systemic disturbances that differ from pathophysiological changes that occur with age including dysregulation of calcium homeostasis that contributes to age related bone loss.


Calcium , Glucuronidase , Animals , Female , Male , Mice , Aging/genetics , Glucuronidase/genetics , Glucuronidase/metabolism , Mice, Inbred C57BL , Phenotype , Phosphates , X-Ray Microtomography
18.
Int J Biol Macromol ; 264(Pt 1): 130145, 2024 Apr.
Article En | MEDLINE | ID: mdl-38382789

Mycophenolate mofetil (MMF) is a viable therapeutic option against various immune disorders as a chemotherapeutic agent. Nevertheless, its application has been undermined by the gastrotoxic metabolites (mycophenolic acid glucuronide, MPAG) produced by microbiome-associated ß-glucuronidase (ßGUS). Therefore, controlling microbiota-produced ßGUS underlines the potential strategy to improve MMF efficacy by overcoming the dosage limitation. In this study, the octyl gallate (OG) was identified with promising inhibitory activity on hydrolysis of PNPG in our high throughput screening based on a chemical collection of approximately 2000 natural products. Furthermore, OG was also found to inhibit a broad spectrum of BGUSs, including mini-Loop1, Loop 2, mini-Loop 2, and mini-Loop1,2. The further in vivo experiments demonstrated that administration of 20 mg/kg OG resulted in predominant reduction in the activity of BGUSs while displayed no impact on the overall fecal microbiome in mice. Furthermore, in the MMF-induced colitis model, the administration of OG at a dosage of 20 mg/kg effectively mitigated the gastrointestinal toxicity, and systematically reverted the colitis phenotypes. These findings indicate that the OG holds promising clinical potential for the prevention of MMF-induced gastrointestinal toxicity by inhibition of BGUSs and could be developed as a combinatorial therapy with MFF for better clinical outcomes.


Colitis , Gallic Acid/analogs & derivatives , Gastrointestinal Microbiome , Mice , Animals , Mycophenolic Acid/pharmacology , Mycophenolic Acid/therapeutic use , Immunosuppressive Agents/therapeutic use , Glucuronidase/metabolism , Bacteria/metabolism , Colitis/drug therapy
19.
Gut Microbes ; 16(1): 2310277, 2024.
Article En | MEDLINE | ID: mdl-38332701

Up to 40% of transplant recipients treated long-term with tacrolimus (TAC) develop post-transplant diabetes mellitus (PTDM). TAC is an important risk factor for PTDM, but is also essential for immunosuppression after transplantation. Long-term TAC treatment alters the gut microbiome, but the mechanisms of TAC-induced gut microbiota in the pathogenesis of PTDM are poorly characterized. Here, we showed that vancomycin, an inhibitor of bacterial beta-glucuronidase (GUS), prevents TAC-induced glucose disorder and insulin resistance in mice. Metagenomics shows that GUS-producing bacteria are predominant and flourish in the TAC-induced hyperglycemia mouse model, with upregulation of intestinal GUS activity. Targeted metabolomics analysis revealed that in the presence of high GUS activity, the hydrolysis of bile acid (BAs)-glucuronic conjugates is increased and most BAs are overproduced in the serum and liver, which, in turn, activates the ileal farnesoid X receptor (FXR) and suppresses GLP-1 secretion by L-cells. The GUS inhibitor vancomycin significantly eliminated GUS-producing bacteria and inhibited bacterial GUS activity and BAs levels, thereby enhancing L-cell GLP-1 secretion and preventing hyperglycemia. Our results propose a novel clinical strategy for inhibiting the bacterial GUS enzyme to prevent hyperglycemia without requiring withdrawal of TAC treatment. This strategy exerted its effect through the ileal bile acid-FXR-GLP-1 pathway.


Diabetes Mellitus , Gastrointestinal Microbiome , Hyperglycemia , Mice , Animals , Tacrolimus/pharmacology , Tacrolimus/therapeutic use , Vancomycin/pharmacology , Immunosuppressive Agents/therapeutic use , Hyperglycemia/chemically induced , Hyperglycemia/drug therapy , Bacteria/genetics , Bacteria/metabolism , Glucuronidase/metabolism , Glucuronidase/pharmacology , Bile Acids and Salts/pharmacology , Glucagon-Like Peptide 1
20.
Cells ; 13(3)2024 Jan 23.
Article En | MEDLINE | ID: mdl-38334603

Heparanase (Hpa1) is expressed by tumor cells and cells of the tumor microenvironment and functions to remodel the extracellular matrix (ECM) and regulate the bioavailability of ECM-bound factors that support tumor growth. Heparanase expression is upregulated in human carcinomas, sarcomas, and hematological malignancies, correlating with increased tumor metastasis, vascular density, and shorter postoperative survival of cancer patients, and encouraging the development of heparanase inhibitors as anti-cancer drugs. Among these are heparin/HS mimetics, the only heparanase-inhibiting compounds that are being evaluated in clinical trials. We have synthesized dicarboxylated oxy-heparins (DCoxHs) containing three carboxylate groups per split residue (DC-Hep). The resulting lead compound (termed XII) was upscaled, characterized, and examined for its effectiveness in tumor models. Potent anti-tumorigenic effects were obtained in models of pancreatic carcinoma, breast cancer, mesothelioma, and myeloma, yielding tumor growth inhibition (TGI) values ranging from 21 to 70% and extending the survival time of the mice. Of particular significance was the inhibition of spontaneous metastasis in an orthotopic model of breast carcinoma following resection of the primary tumor. It appears that apart from inhibition of heparanase enzymatic activity, compound XII reduces the levels of heparanase protein and inhibits its cellular uptake and activation. Heparanase-dependent and -independent effects of XII are being investigated. Collectively, our pre-clinical studies with compound XII strongly justify its examination in cancer patients.


Antineoplastic Agents , Breast Neoplasms , Humans , Animals , Mice , Female , Heparin/pharmacology , Heparin/chemistry , Glucuronidase/metabolism , Antineoplastic Agents/therapeutic use , Carcinogenesis , Breast Neoplasms/drug therapy , Tumor Microenvironment
...